Висячие и вантовые конструкции. Кирсанов Н.М. 1981
Висячие и вантовые конструкции |
Кирсанов Н.М. |
Стройиздат. Москва. 1981 |
158 страниц |
Представлены конструкции висячих и вантовых покрытий общественных и производственных зданий, а также конструкции воздушных подвесных переходов трубопроводов и легких висячих мостов. Даны основные разрезы и планы сооружений, конструкции наиболее важных узлов и элементов. Приведены сведения по расходу материалов, трудозатратам, способу монтажа и производству конструкций. Для студентов строительных специальностей вузов при курсовом и дипломном проектировании.
Предисловие
Введение
Раздел 1. Однопоясные висячие покрытия, стабилизация которых достигается за счет массы настила и его омоноличивания
Компоновочный расчет гибких несущих элементов Конструктивные решения однопоясных висячих покрытий, стабилизация которых достигается за счет массы и омоноличивания настила
1.1. Крытый рынок в Киеве
1.2. Концертный зал в лагере «Спутник» в Сочи
1.3. Бауманский рынок в Москве
1.4. Автобусный гараж в Новгороде
1.5. Универсальный спортивный зал на 5 тыс. мест в Измайлове, Москва
1.6—1.14. Обзор компоновочных схем однопоясных покрытий, стабилизация которых достигается за счет массы настила и его омоноличивания
Раздел 2. Однопоясные висячие покрытия, в которых в качестве несущих элементов используются жесткие нити или фермы
Компоновочный расчет жестких нитей Конструктивные решения однопоясных висячих покрытий с жесткими нитями
2.1. Плавательный бассейн в Харькове
2.2. Ресторан с цилиндрическим покрытием в Ялте
2.3. Зрительный зал пионерского лагеря в Одессе
2.4. Дворец спорта в Вильнюсе
2.5. Крытый стадион на проспекте Мира в Москве
2.6. Магазин-выставка с мембранным покрытием в Киеве
2.7. Павильон СССР на Всемирной выставке в Монреале
2.8—2.16. Обзор компоновочных схем покрытий с жесткими нитями
Раздел 3. Однопоясные висячие покрытия, напрягаемые с помощью поперечных балок или ферм
Конструктивные решения покрытий с жесткими поперечными элементами
3.1. Дворец спорта им. В. И. Ленина во Фрунзе
3.2. Киноконцертный зал в Уч-Дере, Сочи
3.3. Сельскохозяйственная постройка 24Х72 м с висячим покрытием
3.4—3.12. Обзор компоновочных схем покрытий с жесткими поперечными элементами
Раздел 4. Двухпоясные висячие покрытия
Конструктивные решения двухпоясных покрытий
4.1. Дворец спорта «Юбилейный» в Ленинграде
4.2. Бассейн с двухпоясным прямоугольным в плане покрытием в Италии
4.3. Крытый стадион им. В.И. Ленина в Ленинграде
4.4—4.12. Обзор компоновочных схем двухпоясных висячих покрытий
Раздел 5. Седловидные висячие покрытия
Конструктивные решения седловидных покрытий
5.1. Цирк в Новосибирске
5.2. Киноконцертный зал в Паланге
5.3. Велотрек в Крылатском, Москва
5.4. Плавательный бассейн на проспекте Мира в Москве
5.5. Павильон в Трускавце с круглым сетчатым покрытием
5.6—5.14. Обзор компоновочных схем седловидных покрытий
Раздел 6. Вантовые и висячие комбинированные покрытия
Компоновочный расчет висячих комбинированных конструкций
Конструктивные решения вантовых и висячих комбинированных покрытий
6.1. Автобусный гараж в Ленинграде
6.2. Каток с вантовым покрытием в г. Брауншвейге, ФРГ
6.3. Большепролетное промышленное здание с висячим покрытием
6.4. Ангар для тяжелых самолетов во Франкфурте-на-Майне, ФРГ
6.5. Производственное здание с мембранным покрытием и подвесными кранами
6.6. Спортивно-тренировочный манеж в Ленинграде
6.7—6.15. Обзор компоновочных схем вантовых и висячих комбинированных покрытий
Раздел 7. Висячие и вантовые трубопроводные и пешеходные мосты
Приближенный учет геометрической нелинейности висячих комбинированных систем повышенной жесткости
Конструктивные решения легких висячих и вантовых мостов
7.1. Трубопроводный мост пролетом 108 м
7.2. Проект пешеходного моста с жестким прикреплением кабеля к балке в середине пролета
7.3. Висячий мост через р. Омь
7.4. Пешеходный мост с восходящими вантами
7.5. Висячий трубопроводный переход
7.6. Вантовый трубопроводный переход через реку
7.7—7.24. Обзор компоновочных схем легких висячих и вантовых мостов
Список литературы
Предисловие
Одно из важнейших направлений технического прогресса в строительстве — дальнейшее расширение применения сталей высокой прочности, механические характеристики которых в несколько раз выше соответствующих показателей обычной стали, а по стоимости отличаются незначительно.
Не последнее значение в этой проблеме имеют также такие факторы, как снижение трудозатрат в народном хозяйстве на производство металла за счет экономии при использовании высокопрочных сталей, уменьшение стоимости транспортных расходов, облегчение каркасов зданий и т. д.
Однако при внедрении новых сталей в строительство необходимо учитывать их особенности. Так, эффективность использования высокопрочных сталей в сжатых элементах невысока из-за продольного изгиба, который, особенно для компактных сечений из сталей высокой прочности, имеет существенное значение. Поэтому при выборе конструктивной схемы сооружения с применением таких сталей предпочтительнее системы с растянутыми элементами. Этим объясняется, в частности, что в последнее время увеличивается число сооружений, возведенных с использованием висячих и вантовых конструкций, основные элементы которых испытывают растяжение.
Вторая особенность высокопрочных сталей — вследствие высоких напряжений, возникающих при действии временных нагрузок, элементы из таких сталей испытывают сравнительно большие деформации в соответствии с законом Гука.
Этот недостаток может быть преодолен путем совместного предварительного напряжения ограждающих и несущих конструкций, созданием пространственных многосвязных систем, что также характерно для висячих и вантовых покрытий.
Известно, что технология изготовления несущих элементов висячих конструкций меньше связана с резкой и механической обработкой металла, чем это требуется для традиционных жестких ферм, балок. Поэтому при изготовлении висячих конструкций из высокопрочных сталей не требуется дополнительных затрат на замену технологического режущего оборудования и др.
Расширение применения висячих и вантовых конструкций в последнее время объясняется также целым рядом других их качеств — возможностью перекрывать большие пролеты без промежуточных опор, создавать конструкции сложных и необычных пространственных форм в соответствии с архитектурными требованиями. Монтаж большепролетных висячих покрытии не требует устройства временных лесов, применения сложных монтажных механизмов.
Признанием определенных преимуществ висячих конструкций в большепролетных покрытиях перед традиционными стало использование их для многих олимпийских сооружений в Москве, Ленинграде, а также для зрелищно-спортивных объектов в других городах страны.
Цели, поставленные при написании данного учебного пособия, — способствовать дальнейшему повышению конструкторской подготовки студентов, ознакомление их с особенностями компоновки и конструирования висячих покрытий общественных и промышленных зданий и сооружений, возведенных в последние годы в нашей стране и за рубежом. Обращено особое внимание на способы стабилизации этих конструкций, на конструктивные решения элементов, воспринимающих распоры от пролетной конструкции и т. п.
В пособии помещены детальные чертежи конструктивных решений покрытий и мостов, их узлов и специальных элементов, а также дан обзор возможных схем сооружений. Все это является необходимым вспомогательным материалом при курсовом и дипломном проектировании.
Рекомендованы упрощенные способы компоновочных расчетов несущих элементов, позволяющие на первой стадии ознакомления с конструкциями сознательно управлять усилиями в элементах, оценить возможности нового вида конструкций, их экономичность. По нашему мнению дальнейший расчет сооружения в дипломной работе также должен производиться с элементами упрощения расчетной схемы, с тем чтобы было больше времени для детальной конструкторской проработки темы, выбора рациональных способов монтажа и т.д.
В книге приведен раздел легких висячих и вантовых мостов, конструктивное решение которых близко к разрабатываемым в настоящее время конструкциям висячих большепролетных промышленных зданий с подвесными кранами — перспективной областью применения висячих и вантовых конструкций. Данный раздел имеет и самостоятельное значение, так как в практике работы инженера-строителя возникает необходимость возводить подобные сооружения.
Пособие может быть полезно инженерам — проектировщикам и строителям, занимающимся проектированием и возведением большепролетных покрытий, трубопроводных переходов и пешеходных мостов.
Автор считает своим долгом выразить глубокую. благодарность учреждениям за предоставление материала, а также лицам, оказавшим содействие в сборе этого материала для настоящего издания.
Введение
Висячими называются конструкции, в которых основные несущие элементы, перекрывающие пролет здания или сооружения, испытывают растяжение. Несущие элементы этих конструкций могут быть двух видов — висячие и вантовые, по названию которых различают типы сооружений.
Висячие элементы непосредственно воспринимают поперечную нагрузку от настила или подвесок и передают усилия на анкеры. Поэтому оно имеют криволинейное очертание — это гибкие нити (тросы, канаты, круглый прокат), мембраны, нити конечной изгибной жесткости («жесткие нити»), висячие, криволинейно очерченные фермы из жестких элементов и т. п.
Ванты — это прямолинейные гибкие растянутые стержни, передающие усилие от одного узла к другому и не воспринимающие на своей длине поперечной нагрузки.
Впервые висячие покрытия были предложены выдающимся русским инженером Владимиром Григорьевичем Шуховым. В 1896 г. по его проектам на Нижегородской выставке были построены четыре павильона размерами в плане 68—98 м. Основным несущим элементом каждого покрытия являлся гибкий шатер из пересекающихся стальных полос, опирающийся в середине здания на стойки. Препятствием к дальнейшему применению висячих систем в покрытиях была ограниченная прочность обычной стали. Новые конструктивные формы висячих покрытий появились в 50-х годах, нашего столетия при использовании стальных канатов в качестве несущих элементов, что позволило увеличить предварительное напряжение висячих конструкций, а следовательно обеспечить необходимую жесткость легких покрытий.
Современные достижения в области теории расчета сооружений, опыт возведения и эксплуатации висячих покрытий в Советском Союзе и за рубежом подтверждают высокую надежность и экономическую эффективность этих конструкций.
При проектировании висячих покрытий необходимо учитывать основной недостаток висячих систем — их деформативность при действии временной нагрузки. Дополнительные провесы (прогибы) гибкой нити как основного элемента висячей конструкции определяются двумя причинами:
а) упругими удлинениями нити, которые имеют максимальное значение при загружении всего пролета временной нагрузкой. Результатом продольных удлинений нити являются наибольшие дополнительные провесы в середине пролета;
б) кинематическими перемещениями, которые возникают вследствие изменения формы равновесия гибкой висячей системы при загружении нити местной нагрузкой. Эти перемещения наиболее характерны для висячих конструкций и в меньшей степени для других внешне распорных систем — для гибких арок и оболочек. Если представить местную нагрузку в виде симметричной и обратно симметричной составляющих и рассматривать только второе слагаемое, которое не вызывает распора в нити, но является причиной изменения формы равновесия, то можно видеть, что кинематические перемещения не зависят от упругих свойств нити. Уменьшить эти перемещения можно наложением горизонтальных связей на нить (включением дополнительных вант, введением наклонных подвесок и т.п.), т. е. путем усложнения расчетной схемы несущей конструкции — использованием так называемых систем повышенной жесткости.
В соответствии с конструктивными особенностями и способами обеспечения жесткости пролетных элементов различают следующие виды висячих покрытий.
1. Однопоясные висячие покрытия, стабилизация которых достигается за счет массы настила, его предварительного обжатия с торцов и омоноличивания стыков. Увеличение массы покрытия приводит к увеличению распора от постоянной нагрузки, являющегося восстанавливающей силой при изменении формы равновесия под действием временной нагрузки. Таким образом, с точки зрения уменьшения кинематических перемещений увеличение массы является благоприятным — уменьшаются и упругие деформации при загружении временной нагрузкой всего пролета, так как с увеличёнием массы пролетной конструкции возрастают сечения несущих нитей, уменьшаются напряжения от временной нагрузки, а следовательно, по закону Гука, уменьшаются деформации. Однако экономически эта мера сама по себе неэффективна, так как с увеличением массы настила растут затраты не только на несущие нити, но и на конструкции, воспринимающие распор. Более оправдано использование таких плит и панелей в случае, если они могут быть предварительно напряжены (обжаты) и омоноличены.
Как показали исследования, омоноличивание любых висячих конструкций, т. е. превращение системы отдельно работающих плоских элементов в оболочку или в комбинированную пространственную систему, позволяет уменьшить упругие прогибы и кинематические перемещения в 4—5 раз.
Предварительное напряжение и омоноличивание, покрытия производится в следующей последовательности: на свободно висящие несущие нити навешивается настил и укладывается балласт. Нити при этом получают удлинения, и швы между плитами расширяются. Производится замоноличивание швов — заливка цементным раствором, сварка металлического настила или закладных деталей и т. п., а затем снимается балласт. При использовании в качестве заполнителя швов цементного раствора балласт снимается после приобретения заполнителем проектной прочности. За счет упругих свойств уменьшается стрела провеса нитей и плиты настила получают обжатие торцов. При последующих загружениях временной нагрузкой, меньше балластной, покрытие работает как монолитная оболочка.
2. Однопоясные покрытия, в которых в качестве несущих элементов используются жесткие нити или фермы. Уменьшение местных деформаций (кинематических перемещений) в таких покрытиях достигается за счет изгибной жесткости растянутых элементов и за счет большего натяжения их от постоянных нагрузок — конструкциям из проката могут быть заданы меньшие стрелы провеса: 1/20 — 1/30 пролета. Для тросовых покрытий рекомендуется провес 1/15 пролета. При дальнейшем уменьшении стрелы возрастают упругие деформации тросов, имеющих большие расчетные сопротивления и пониженный модуль упругости, чем прокат.
Однако использование жестких нитей возможно лишь при небольших пролетах, так как с увеличением пролета значительно усложняется монтаж и увеличивается их масса.
3. Однопоясные висячие покрытая, напрягаемые с помощью поперечных балок или ферм. Стабилизация данных канатно-балочных систем достигается либо увеличенной массой поперечных и жестких на изгиб элементов, либо предварительным напряжением оттяжек, которые соединяют поперечные балки или фермы с фундаментами или опорами. Таким способом напрягаются покрытия с легкими кровельными настилами. Благодаря изгибной жесткости поперечных балок или ферм покрытие приобретает пространственную жесткость, которая особенно проявляется при загружении пролетной конструкции местной нагрузкой.
Однопоясные покрытия трех рассмотренных видов получили наибольшее распространение в строительстве висячих покрытий. Это может быть объяснено простотой конструктивных форм, высокой технологической эффективностью изготовления элементов и монтажа сооружений.
4. Двухпоясные висячие покрытия состоят из несущих вогнутых поясов, которые испытывают усилия не только от постоянной нагрузки, но натянуты также и напрягающими нитями — либо сверху с помощью стоек (линзовидные выпуклые фермы), либо снизу через подвески в вогнутых покрытиях. Может показаться, что включение второго пояса эквивалентно приложению постоянной нагрузки, которую в ряде случаев искусственно увеличивают, чтобы не было «вывертывания» легкого покрытия при ураганном ветре. Однако легкая предварительно напряженная двухпоясная система экономичнее тяжелого покрытия, так как при ее использовании не увеличиваются сечения колонн и фундаментов. Двухпоясные системы во время эксплуатации имеют меньшие упругие деформации по сравнению с однопоясными. Но кинематические перемещения в схемах с вертикальными подвесками и стойками почти такие же, как и в однопоясных, так как в этих схемах не накладываются связи на горизонтальные перемещения гибких поясов. С этой целью рекомендуются более эффективные схемы с треугольной решеткой или с соединением поясов жестким узлом в середине пролета для покрытий с вогнутым верхним поясом.
5. Седловидные покрытия имеют несущие и расположенные к ним под углом — напрягающие нити. Такие сетки или мембраны предварительно напряжены и имеют форму гиперболических параболоидов. Распоры передаются на замкнутый контур в виде изогнутого кольца или арок, на тросы-подборники или на фундаменты.
Передача распоров на замкнутый контур вызывает необходимость создания округлой формы сооружений в плане. Таким образом, седловидные покрытия наиболее целесообразно использовать для большепролетных общественных зданий.
6. Вантовые и висячие комбинированные системы состоят из растянутых элементов — вант (или нитей) и элементов, воспринимающих сжатие и работающих на изгиб — балок, жестких ферм, арок, рам, плит, оболочек. Прогибы вантовых (стержневых) конструкций возникают вследствие, в основном, упругих деформаций прямолинейных стержней-вант, поэтому такие конструкции имеют определенные преимущества перед висячими, которые, как отмечалось, испытывают также кинематические перемещения. Пологие ванты под действием собственной массы провисают, и жесткость их уменьшается, так как при натяжении вначале в основном «выбирается» стрела провисания и лишь затем ванта начинает в большей мере работать как упругий стержень. Поэтому не рекомендуется применять схемы с длинными горизонтальными или слабо наклонными вантами. Следует обратить внимание на некоторую многодельность изготовления вантовых конструкций и трудоемкость регулирования предварительного натяжения вант при монтаже на необходимость надежной защиты от коррозии самих вант и узлов.
Комбинированные висячие системы типа «нить — балка» лучше, чем гибкие нити, воспринимают сосредоточенные воздействия, например, от подвесных кранов, поэтому такие конструкции, как и вантовые, следует использовать для покрытий промышленных зданий с подвесным крановым оборудованием. Легкие висячие и вантовые мосты — трубопроводные и пешеходные переходы — по конструктивным решениям элементов и узлов, по способам стабилизации пролетного строения близки к конструкциям висячих и вантовых комбинированных покрытий и особенно к покрытиям промышленных зданий с большими пролетами.
Комментарии
Гость
Ср, 08/26/2020 - 17:27
Permalink
Рекомендую к прочтению!
Добавить комментарий