Пространственные фермы. Теория расчета, примеры и задачи. Подольский И.С. 1931
Пространственные фермы. Теория расчета, примеры и задачи |
Подольский И.С. |
Государственное издательство. Москва-Ленинград. 1931 |
348 страниц |
Предисловие
Часть I. Теория расчета пространственных ферм
Глава I. Основные условия устройства пространственных ферм
§ 1. Общие понятия о пространственных фермах
§ 2. Образование простейших пространственных ферм
§ 3. Преобразование простейших ферм. Сложные системы
§ 4. Сетчатые системы
§ 5. Балочно-сферические покрытия
§ 6. Классификация пространственных ферм
§ 7. Устройство опор пространственных ферм
§ 8. Условия статической определимости пространственных ферм
Глава II. Статическое равновесие сил в пространстве
§ 9. Сложение и разложение сил в пространстве
§ 10. Разложение силы на три направления в пространстве
§ 11. Нулевая нагрузка и нулевые усилия
§ 12. Разложение силы на шесть направлений в пространстве
§ 13. Исследование геометрической неизменяемости пространственных систем
Глава III. Расчет статически определимых пространственных систем
§ 14. Общие основания расчета ферм
§ 15. Расчет пространственных ферм по способу непосредственного разложения узловой нагрузки
§ 16. Расчет пространственных систем путем разложения ни на плоские фермы
§ 17. Расчет пространственных ферм по способу замены стержней
§ 18. Заключения о способах расчета пространственных ферм
§ 19. Расчет опорного кольца и условия правильного расположения подвижных опор
§ 20. Элементы расчета пространственных покрытий
Глава IV, Расчет пространственных стропильных систем
§ 21. Расчет балочно-сферического покрытия
§ 22. Расчет пирамидальных покрытий
§ 23. Расчет цилиндрического сетчатого покрытия
§ 24. Зубчатые пространственные стропила
Глава V. Расчет металлических пилонов и башен
§ 25. Пилоны раскосной системы
§ 26. Пилоны сетчатой системы (гиперболоиды)
Глава VI. Расчет статически неопределимых пространственных ферм
§ 27. Общие основания расчета статически неопределимых пространственных ферм
§ 28. Расчет статически неопределимой пространственной фермы с одним лишним стержнем
§ 29. Расчет статически неопределимых пространственных ферм со многими лишними стержнями
§ 30. Примеры расчета статически неопределимых пространственных ферм
§ 31. Влияние температуры на усилия в пространственных фермах
§ 32. Определение усилий от действия температуры в статически неопределимых пространственных фермах
Глава VII. Пространственные фермы аэропланов
§ 33. Общие схемы пространственных ферм аэропланов
§ 31 Необходимость расчета аэропланной фермы как пространственной системы
§ 35. Расчет статически неопределимой, пространственной фермы аэроплана
§ 36. Расчет пространственной фермы аэроплана рамной конструкции (без тросов)
§ 37. Метод расчета пространственной фермы крыла аэроплана
§ 38. Расчет фермы фюзеляжа на кручение
Часть II. Задачи и упражнения по расчету пространственных ферм
1. Задачи и упражнения к первой главе
2. Контрольные задачи к первой главе
3. Задачи и упражнения ко второй главе
4. Применение метода нулевой нагрузки
5. Разложение сил на шесть направлений в пространстве
6. Определение геометрической неизменяемости пространственной системы по способу нулевых усилий
7. Контрольные задачи ко второй главе
8. Задачи и упражнения к третьей главе
9. Непосредственное разложение узловой нагрузки
10. Разложение пространственных ферм на плоские системы
11. Способ замены стержней
12. Расчет опорного кольца
13. Контрольные задачи к третьей главе
14. Задачи и упражнения к четвертой главе
15. Контрольные задачи к четвертой главе
16. Контрольные задачи к пятой главе
17. Задачи и упражнения к шестой главе
18. Контрольные задачи к шестой главе
Литература о пространственных фермах
Предисловие
Пространственные фермы применяются для устройства купольных и шатровых покрытий в разных общественных зданиях крупных размеров, например: банки, цирки, выставочные павильоны, машинные здания, фабричные и заводские корпуса, а также в мостах, кранах, газгольдерах, башнях, маяках, кессонах и павильонах.
Летательные аппараты — аэропланы и дирижабли — тоже представляют пространственные стержневые системы или фермы. Сюда же относятся радиомачты и причальные мачты для дирижаблей.
Главная цель устройства какой-либо пространственной фермы заключается в том, чтобы получить конструкцию, свободную от внутренних стержней, а также чтобы придать всему сооружению легкую, изящную и рациональную форму.
В некоторых случаях, например в купольном покрытии, требуется еще устройство верхнего освещения (световой фонарь).
Но чтобы суметь выбрать или спроектировать наиболее рациональную в конструктивном отношении какую-либо пространственную ферму, чтобы получить систему жесткую, геометрически-неизменяемую и в то же время статически определимую, а также чтобы избежать излишней затраты материала и получить конструкцию наименьшего веса, — для всего этого необходимо знать основные условия устройства пространственных ферм и приемы расчета их, т. е. определение усилий во всех элементах пространственной системы.
Для того чтобы приобрести некоторый навык в расчете пространственных ферм, необходима также и практическая работа, заключающаяся в решении разного рода задач и в выполнении разных упражнений, начиная с самых простых, элементарных, и переходя затем к более сложным.
Изучение пространственных ферм кроме практической цели имеет также большое образовательное значение для каждого инженера, так как дает понятие о распределении усилий в стержнях, расположенных не в плоскости, а в пространстве, а также позволяет ознакомиться с применением законов статики к равновесию сил, расположенных в пространстве, и тем способствует развитию образного мышления о пространственных конструкциях, выражаемых всегда чертежами на плоскости.
Эта способность умозрительного представления "пространства" достигается также не сразу, а только после многих упражнений по расчету пространственных ферм.
Для этой цели в курсе приведено достаточное количество (всего около 200) примеров и задач с соответствующими подробными решениями.
Все эти примеры могут служить материалом для самостоятельной или лабораторно-групповой проработки курса. Однако некоторые, так называемые "контрольные задачи", приведены в курсе без соответствующих решений, чтобы дать возможность учащимся самостоятельно попробовать свои силы и доказать свое знакомство с курсом. Трудность решения этих контрольных задач не более трудности подобных задач с приведенными решениями их.
Теория расчета пространственных ферм изложена в курсе с достаточной полнотой, причем, так как настоящий курс служит учебным руководством в Военной воздушной академии, то заключительная глава курса посвящена расчету пространственных ферм аэропланов.
Оригинальную часть настоящего труда представляет расчет сетчатых гиперболоидов (§ 26).
Проф. И. Подольский. Москва, 1930 г.
Добавить комментарий